

Innovative Power Quality Solutions

SKM Consultants New Zealand Strongly Recommends EQ-ST For Supply Authority

Supply Authority, Highbank Pumping Power Station New Zealand: adopts Equalizer-ST real-time compensation innovation on strong recommendations received from Sinclair Knight Merz (SKM) Engineering Consultants for one of their largest irrigation projects. SKM found that the Equalizer-ST (EQ-ST) to be the most feasible motor startup solution for the reduction in their Voltage Drop & to reduce the motor startup current. Read More...

SKM LOOKS FOR THE ULTIMATE REAL-TIME REACTIVE POWER COMPENSATION SOLUTION

ELSPEC

SKM one of the largest & most reputable engineering consultants in the world, was commissioned by the Highbank Supply Authority to find a suitable Motor Startup solution for one of their pump houses at BCI. 4×1.5 MW Motors were utilized by Highbank & the problems facing SKM were numerous:

- Voltage Dip: The utility put a limitation on the voltage dip, & SKM had to come up with a suitable solution to reduce the drop from 4% to only 1.5% during the startup of the motors.
- Starting Current: Another challenge was to reduce the starting current of the motors to a satisfactory level. Engineers were uncertain whether or not the motors would in actual fact startup without compensation.
- Site Location: The distance of the site from the substation was 15km. This in itself opposed a problem as it may lead to high impendence on the long line.

AVAILABLE ALTERNATIVES NOT RESOLVING THE ISSUES

Initial simulations ran by SKM, didn't resolve any of the challenges faced. The results from some of the simulations demonstrated the following:

VSD Using Synchronous Transfer: Although on the surface this method proved to be the best motor startup solution. Results however showed it to be a complex & expensive exercise to start the 4 motors. This is due to the fact that individual compensation systems were required for each individual motor. In addition, it did not correct the power factor & a PFC system was still needed.

MV Soft Starter: This alternative didn't comply with the voltage dip limitation requirements as set out by the utility. In addition it didn't reduce the motor startup current to a satisfactory level. It also proved to be a complex & expensive technology.

SKM FINDS A POSSIBLE SOLUTION IN THE EQ-ST & EQ TECHNOLOGIES

As an additional attractive alternative, the engineers at SKM decided to consider the EQ-ST as another possibility to resolve the challenges. The technology offered many attractive features such as:

EQUALIZER-ST CENTRALIZED COMPENSATION

- The EQ-ST demonstrated to be the perfect centralized real-time motor startup solution.
 1 System, serves 4 individual motors, therfore proving to be a very cost-effective solution.
- It met all the requirements for the Voltage Dip as Set out by the authority.

COMBINED EQUALIZER COMPENSATION

The setup transformer used to connect the EQ-ST system to the MV during startup was also utlized to compensate for the residum reactive energy during steady-step by the EQ System.

Innovative Power Quality Solutions @ www.elspec-ltd.com

ESPEC Innovative Power Quality Solutions

EQ-ST & EQ'S PERFORMANCE IMPRESS SKM

In order to optimize the performance of the pumping facility, increase cost effectiveness, protect valuable equipment, comply with the regulatory authority & correct the power factor a combination of Elspec's compensation systems was installed at the site. The installation as outlined in the diagram below (Fig. 4) consisted of 1 x EQ-ST 8.4Mvar - 690V system & 1 x EQ 2.43Mvar - 690V system. Engineers verified the performance of the Equalizer technology meticulously & derived at the following results:

With EQ-ST 8.4Mvar 66% Compensation				
Parameter	Without (Direct On Line)	With EQ-ST	% Improvement	
Voltage Drop During Startup at 66kV ΔU %	4.1%	1.4%	-65%	
Voltage Drop During Startup at 11kV ΔU %	8.8%	2.8%	-68%	
Total Current at 11kV	580Amp	280Amp	-51%	

The combination of the EQ & EQ-ST proved most satisfactory & met additional criteria:

Case Study

Motor Startup	The consecutive startup of the 4 motors at the facility was executed successfully & with no difficulties.			
Voltage Drop	The voltage drop during startup was reduced to more than 60%.			
Startup Current	The startup current was significantly reduced from 580Amp to below 280Amp.			
Active Power	Active power during startup became 2Mw instead of 1.8Mw in DOL.			
Startup Time	The length of the startup period is reduced in 25% from 4 to 3 seconds.			
Combined EQ-ST (8.4Mvar) & (EQ 2.43Mvar) 83% Compensation				
Parameter	Without With % (Direct EQ-ST Improvement On Line)			

	On Line)	-~	
Voltage Drop During Startup at 66kV ΔU %	4.1%	1.15%	-72%
Voltage Drop During Startup at 11kV			
ΔU %	8.8%	2.25	-75%
Total Current at 11kV	580Amp	240Amp	-58%

Figures 5, 6 & 7 below, outline the results in graphical presentations for the EQ-ST only in more detail.

Figure 1: BCI Pump House Irrigation Site

Innovative Power Quality Solutions @ www.elspec-ltd.com

Figure 2: Motor - Pumps

Figure 3: EQ-ST & EQ Compensation Systems

Innovative Power Quality Solutions @ www.elspec-ltd.com

© Elspec-Ltd

Case Study

Figure 4: Electrical Diagram

Figure 5: Motor Startup With EQ-ST Only At 66% Compensation & Without Compensation

Figure 7b: Motor Startup Only With EQ-ST At 11kV & 16kV Network Voltage Only At 66% Compensation